Your DNA can tell how many kids you’ll have

Your DNA can tell how many kids you'll have (Getty Images photo)Your DNA can tell how many kids you’ll have (Getty Images photo)
The age at which you will have your first child and the number of kids you are likely to have may be encoded in your DNA, say scientists who found that genetic data can be used to accurately predict our reproductive behaviour.

The study , led by researchers at University of Oxford, includes an analysis of 62 data sets with information from 2,38,064 men and women on the age at which they had their first child and 3,30,000 men and women for the number of children. Until now, reproductive behaviour was thought to be linked to personal choices or social circumstances.

“We also found that women with DNA variants for postponing parenthood also have bits of DNA code associated with later onset of menstruation and later menopause,” said professor Melinda Mills.

The study shows that DNA variants linked with the age at which people have their firstborn are also associated with characteristics reflecting reproduction and sexual development, such as the age at which girls have their first period, when the voice breaks in boys and at what stage women experience their menopause.

source”cnbc”

fb is being asked for more facts through governments but it could’t tell most customers

Facebook user

fb has visible an boom inside the wide variety of information requests from governments, declaring thatnearly two–thirds include gagging orders.

within the 2nd 1/2 of 2015, the social networking large obtained 46,763 requests for user records, up 13percentage from 41,214 in the first half of of the yr, in keeping with new data from the company.

For the first time, fb said statistics about non-disclosure orders which do no longer allow facebook to notify the user about a request. “about 60 percent” of requests from U.S. authorities contained thesegagging orders.

The variety of objects restricted for violating nearby regulation improved over the primary 1/2 of 2015, tofifty five,827 gadgets, up from 20,568. This changed into in particular due to one photo in France.

one of the case research explains that the increase in restrained content in this half of is nearly totallydue to one image related to the November 2015 terrorist attacks in Paris. The image changed intopresupposed to violate French legal guidelines related to shielding human dignity. We confined get right of entry to to more than 32,000 copies of the photograph, in France simplest, in response to a legalrequest from the French government,” fb wrote in its blogpost.

fb user
David Paul Morris | Bloomberg | Getty pics
U.S. authorities were maximum active, requesting 19,235 portions of consumer records. In eighty onepercentage of those cases, fb produced a few statistics. India became additionally very energetic andrequested for five,561 portions of information. fb produced a few information in only over 50percentage of all those requests.

facebook isn’t always the only employer to release these varieties of reviews. a number of othergeneration agencies including Apple, Google and Microsoft all have transparency reports.

but tensions have been heightened between era firms and governments following thetussle between Apple and the U.S. Federal Bureau of investigation (FBI). The government have been looking to unlock thesmartphone of one of the San Bernardino shooters and requested Apple for assist. Apple refused to helpthe government and provide a so-calledback door” into its software.

facebook reassured users that it does now not permit this to happen both.

“As we’ve emphasised normally, facebook does not provide any authorities with ‘returned doors‘ or direct get admission to to people‘s information. We scrutinize each request for user facts we receive forlegal sufficiency, no matter which u . s . is making the request. If a request seems to be poor or overlybroad, we thrust back hard and could fight in courtroom, if important,” the social media companystated.

Stem cell progeny tell their parents when to turn on

Super-sonic signal: A signal from Transit-Amplifying Cells (TACs) activates stem cells in the hair follicle, researchers have found. Both types of cells appear in green (top), with TACs clustered lower down. The researchers identified the signal as Sonic Hedgehog. In experiments, such as this one (bottom), they disabled the signal, interfering with hair growth and regeneration.
Credit: Image courtesy of Rockefeller University

Stem cells switch off and on, sometimes dividing to produce progeny cells and sometimes resting. But scientists don’t fully understand what causes the cells to toggle between active and quiet states.

New research in Elaine Fuchs’ Laboratory of Mammalian Cell Biology and Development focused on stem cells in the hair follicle to determine what switches them on. The researchers found cells produced by the stem cells, progeny known at Transit-Amplifying Cells or TACs, emit a signal that tells quiet hair follicle stem cells to become active.

“Many types of mammalian stem cells produce TACs, which act as an intermediate between the stem cells and their final product: fully differentiated cells in blood, skin and elsewhere,” says Ya-Chieh Hsu, who conducted the research while as a postdoc in the lab and will soon move to Harvard University. “In the past, TACs were seen as a population of cells that sat by passively cranking out tissues. No one expected them to play a regulatory role.”

Hsu and Fuchs went a step further to identify the signal sent out by the TACs. They pinpointed a cell-division promoting protein called Sonic Hedgehog, which plays a role in the embryonic development of the brain, eyes and limbs.

Stem cells are medically valuable because they have the potential to produce a number of specialized cells suitable for specific roles. Stem cells’ production of these differentiated cells is crucial to normal maintenance, growth and repair. Many tissues have two populations of stem cells: one that divides rarely, known as the quiescent stem cells, and another that is more prone to proliferate, known as primed stem cells. Regardless of their proliferation frequency, most stem cells in humans do not directly produce differentiated progeny cells; instead, they give rise to an intermediate proliferating population, the TACs.

The hair follicle, the tiny organ that produces a hair, forms a narrow cavity down into the skin. It cycles between rounds of growth, destruction and rest. When entering the growth phase, the primed stem cell population is always the first to divide and generates the TACs clustered lower down in the hair follicle. Primed stem cell proliferation sets the stage for the next round of hair growth, a process which ensures hairs are replaced as they are lost over time. Proliferating TACs produce the hair shaft, as well as all the cells surrounding the hair underneath the skin, which make up the follicle itself.

At the outset, Hsu and Fuchs suspected a role for both the TACs and for Sonic Hedgehog in hair regeneration.

“We noticed that the primed stem cell population gets activated early and makes the TACs, while the quiescent stem cell population only becomes activated once TACs are generated. This correlation prompted us to look for a signal that is made by the TACs. Sonic Hedgehog is that signal, as we went on to demonstrate,” explained Fuchs.

In experiments described this week in Cell, Hsu disabled TACs’ ability to produce the Sonic Hedgehog protein by knocking out the gene responsible in the hair follicles of adult mice. As a result, the proliferation of hair follicle stem cells and their TACs are both compromised. They further showed that it is the quiescent stem cell population which requires Sonic Hedgehog directly for proliferation.

Surprisingly, when Hsu blocked the ability of the quiescent stem cells to respond to Sonic Hedgehog, hair growth proceeded, but follicles were shorter, and with each round of hair cycling, the quiescent and primed stem cell populations were diminished, until hair regeneration failed altogether. These features are remarkably similar to what happens in male pattern baldness, according to the researchers. Although the root of this disorder may be further upstream than Sonic Hedgehog, this study provides new insights into the manifestations of hair loss, which in the long run will be necessary to develop new therapeutics, they say.

TACs are a step in many different stem cell lineages, and the researchers posit that although the precise signal may differ, TACs may be functioning similarly in other tissues such as our blood and intestine. “In most adult tissues,” Fuchs says, “our stem cells must be able to quickly respond to injury. By exploiting the TACs as rheostats, the process can be tightly regulated to ensure that just the right amount of new tissue is generated to repair the wound. Thus, TACs can no longer be viewed as a passive, intermediate in a stem cell lineage but rather as a key signaling center that orchestrates tissue regeneration.”

[“source-gsmarena”]

Stem cell progeny tell their parents when to turn on

Super-sonic signal: A signal from Transit-Amplifying Cells (TACs) activates stem cells in the hair follicle, researchers have found. Both types of cells appear in green (top), with TACs clustered lower down. The researchers identified the signal as Sonic Hedgehog. In experiments, such as this one (bottom), they disabled the signal, interfering with hair growth and regeneration.
Credit: Image courtesy of Rockefeller University

Stem cells switch off and on, sometimes dividing to produce progeny cells and sometimes resting. But scientists don’t fully understand what causes the cells to toggle between active and quiet states.

New research in Elaine Fuchs’ Laboratory of Mammalian Cell Biology and Development focused on stem cells in the hair follicle to determine what switches them on. The researchers found cells produced by the stem cells, progeny known at Transit-Amplifying Cells or TACs, emit a signal that tells quiet hair follicle stem cells to become active.

“Many types of mammalian stem cells produce TACs, which act as an intermediate between the stem cells and their final product: fully differentiated cells in blood, skin and elsewhere,” says Ya-Chieh Hsu, who conducted the research while as a postdoc in the lab and will soon move to Harvard University. “In the past, TACs were seen as a population of cells that sat by passively cranking out tissues. No one expected them to play a regulatory role.”

Hsu and Fuchs went a step further to identify the signal sent out by the TACs. They pinpointed a cell-division promoting protein called Sonic Hedgehog, which plays a role in the embryonic development of the brain, eyes and limbs.

Stem cells are medically valuable because they have the potential to produce a number of specialized cells suitable for specific roles. Stem cells’ production of these differentiated cells is crucial to normal maintenance, growth and repair. Many tissues have two populations of stem cells: one that divides rarely, known as the quiescent stem cells, and another that is more prone to proliferate, known as primed stem cells. Regardless of their proliferation frequency, most stem cells in humans do not directly produce differentiated progeny cells; instead, they give rise to an intermediate proliferating population, the TACs.

The hair follicle, the tiny organ that produces a hair, forms a narrow cavity down into the skin. It cycles between rounds of growth, destruction and rest. When entering the growth phase, the primed stem cell population is always the first to divide and generates the TACs clustered lower down in the hair follicle. Primed stem cell proliferation sets the stage for the next round of hair growth, a process which ensures hairs are replaced as they are lost over time. Proliferating TACs produce the hair shaft, as well as all the cells surrounding the hair underneath the skin, which make up the follicle itself.

At the outset, Hsu and Fuchs suspected a role for both the TACs and for Sonic Hedgehog in hair regeneration.

“We noticed that the primed stem cell population gets activated early and makes the TACs, while the quiescent stem cell population only becomes activated once TACs are generated. This correlation prompted us to look for a signal that is made by the TACs. Sonic Hedgehog is that signal, as we went on to demonstrate,” explained Fuchs.

In experiments described this week in Cell, Hsu disabled TACs’ ability to produce the Sonic Hedgehog protein by knocking out the gene responsible in the hair follicles of adult mice. As a result, the proliferation of hair follicle stem cells and their TACs are both compromised. They further showed that it is the quiescent stem cell population which requires Sonic Hedgehog directly for proliferation.

Surprisingly, when Hsu blocked the ability of the quiescent stem cells to respond to Sonic Hedgehog, hair growth proceeded, but follicles were shorter, and with each round of hair cycling, the quiescent and primed stem cell populations were diminished, until hair regeneration failed altogether. These features are remarkably similar to what happens in male pattern baldness, according to the researchers. Although the root of this disorder may be further upstream than Sonic Hedgehog, this study provides new insights into the manifestations of hair loss, which in the long run will be necessary to develop new therapeutics, they say.

TACs are a step in many different stem cell lineages, and the researchers posit that although the precise signal may differ, TACs may be functioning similarly in other tissues such as our blood and intestine. “In most adult tissues,” Fuchs says, “our stem cells must be able to quickly respond to injury. By exploiting the TACs as rheostats, the process can be tightly regulated to ensure that just the right amount of new tissue is generated to repair the wound. Thus, TACs can no longer be viewed as a passive, intermediate in a stem cell lineage but rather as a key signaling center that orchestrates tissue regeneration.”

[“source-gsmarena”]